
APPROVED FOR
PUBLIC DISTRIBUTION

MASSACHUSETTS INTITUTE OF TECHNOLOGY VLSI PUBLICATIONS

VLSI Memo No. 89-559 .,

September 1989 .

00

Work-Preserving Emulations of Fixed-Connection Networks

Richard Koch, Tom Leighton, Bruce Maggs, Satish Rao, and Arnold Rosenberg

Abstract

I In this paper we study the problem of emulating TG steps of an NG-node guest network on

an NH-node host network. We call an emulation work-preserving if the time required by the
host, TH, is O(TGNG/NH) because then both the guest and host networks perform the
same total work 1 (TGN to within a constant factor. We say that an emulation is real-
time if TH =O(TG), because then the host emulates the guest with constant delay.

O Although many isolated emulation results have been proved for specific networks in the
past, and measures such as dilation and congestion were known to be important, the field
has lacked a model within which general rsults and meaningful lower bounds can be
proved. We attempt to provide such a model, along with corresponding general techniques
and specific results in this paper Some of the more interesting and diverse consequences
of this work include: -

1. a proof that a linear array can emulate a (much larger) butterfly in a work-preserving
fashion, but that a butterfly cannot emulate an expander (of any size) in a work-
preserving fashion,

2. a proof that a mesh can be emulated in real time in a work-preserving fashion on a
butterfly, even though any 0(l)-to-I embedding of a mesh in a butterfly has
dilation (0 (log N),

3. a proof that an N log N-node butterfly can be emulated in a work-preserving fashion
on an N-node shuffle-exchange graph, and vice-versa,

4. simple O(N 2 /log 2 N)-area and O(N 3 / 2 /log 3 / 2 N)-volume layouts for the N-node
shuffle-exchange graph, and

5. an algorithm for sorting N-numbers in O(log N) steps with high probability on an N-
node shuffle-exchange graph with constant size queues.

Microsystems Massachusetts Cambridge 90 01 16
Technology Institute Massachusetts Telephone
Laboratories of Technology 02139 (617) 253-0292

It 4
! i L ,.

U -i

4

..1

Acknowledgements ... -

This research was supported by the Defense Advanced Research Projects Agency under
Contract N00014-87-K-0825, the Office of Naval Research under Contract N00014-86-K-
0593, the Air Force under Contract OSR-86-0076, and the Army under Contract DAAL-03-
86-K-0171. Tom Leighton is supported by an NSF Presidential Young Investigator Award
with matching funds provided by IBM. Bruce Maggs is supported by an NSF Graduate
Fellowship. Arnold Rosenberg is supported by NSF Grant CCR-88-12567.

Author Information

Koch, current address: AT & T Bell Laboratories, Crawfords Corner Road,
Holmdale, NJ 07733.

Leighton: Mathematics Department and Laboratory for Computer Science, Room 2-377,
MIT, Cambridge, MA 02139. (617) 253-3662.

Maggs: Laboratory for Computer Science, Room NE43-313, MIT, Cambridge, MA 02139.
(617) 253-7843.

Rao: Laboratory for Computer Science, Room NE43-313, MIT, Cambridge, MA 02139.
(617) 253-7843.

Rosenberg: Department of Computer Science, University of Massachusetts,
Amherst, MA 01003.

Copyright 0 1989 MIT. Memos in this series are for use inside MIT and are not considered to
be published merely by virtue of appearing in this series. This copy is for private circulation
only and may not be further copied or distributed, except for government purposes, if the
paper acknowledges U. S. Government sponsorship. References to this work should be either
to the published version, if any, or in the form "private communication." For information
about the ideas expressed herein, contact the author directly. For information about this
series, contact Microsystems Technology Laboratories, Room 39-321, MIT, Cambridge, MA
02139; (617) 253-0292.

Work-Preserving Emulations of Fixed-Connection Networks
*(Extended Abstract)

Richard Koch"2 Tom Leighton"2 Bruce Maggs3 Satish Rao2 Arnold Rosenberg3

'Mathematics Department and 'Department of Computer Science
2 Laboratory for Computer Science University of Massachusetts

Massachusetts Institute of Technology Amherst, Massachusetts 01003
Cambridge, Massachusetts 02139

Abstract 1 Introduction

In this paper, we study the problem of emulating TG 1.1 The Problem
steps of an Nu-node guest network on an NH-node host
network. We call an emulatibn work-preserving if the In this paper, we study the problem of emulating an
time required by the host, TH, is O(TGNG/NH) because Nu-node guest network G = (VG, EG) on an NH-node

then both the guest and host networks perform the same host network H = (VI, EH) where NH :5 NG. Our

total work, e(TGNG), to within a constant factor. We goal is to emulate TG steps of any computation on G

say that an emulation is real-time if TH = O(TG), be- in TH = STG steps on H where S (the slowdown of the

cause then the host emulates the guest with constant emulation) is as small as possible.

delay. Although many isolated emulation results have The slowdown of the emulation must always be at
least as large as NG/NH since G has NG/.NH times as

been proved for specific networks in the past, and mea-
sures such as dilation and congestion were known to be many processors as does H. If S = O(NG/NH), then

important, the field has lacked a model within which we say that the emulation is work-preserving because

general results and meaningful lower bounds can be then the total work (i.e., the processor-time product)

proved. We attempt to provide such a model; along performed by the emulating network (WH = THNH) is

with corresponding general techniques and specific re- within a constant factor of the work performed by the

sults in this paper. Some of the more interesting and guest network (WG-= TuNG). Such emulations achieve

diverse conseqeuences of this work include: optimal speedup (to within a constant factor) over se-
quential emulations of G since they use NH processors

1. a proof that a linear array can emulate a (much to solve a problem O(NH) times faster than is possible
larger) butterfly in a work-preserving fashion, but with a single processor.
that a butterfly cannot emulate an expander (of More generally, we say that there is a work-preserving
any size) in a work-preserving fashion, emulation of a class of networks g by a class of networks

2. a proof that a mesh can be emulated in real time Wi with slowdown S(N) if for every N and T, we can
2. prof hata msh an e eulaed n ral ime emulate any T steps of any S(N)N-node network in

in a work-preserving fashion on a butterfly, even in O(S(N)T) steps on any N-node network in it. If

though any 0(1)-to-1 embedding of a mesh in a 5 (N)) for om an twokthn w sa
butterfly has dilation Q(logN), S(N) "- 0(log" N) for some constant a, then we say

that the emulation is NC work-preserving since every

3. a proof that an N log N-node butterfly can be er- step of G can be emulated in O(log' N) steps of H. If
ulated in a work-preserving fashion on an N-node S(N) = O(N a) for some constant a, then we say that
shuffle-exchange graph, and vice-versa, the emulation is polynomial time work-preserving, and

so on. In the special case that S(N) = 0(1), we say that
4. simple O(N'/ log2 N)-area and O(N3//log 3 /2 N)- the emulation is real-time. Real-time emulations are the

volume layouts for the N-node shuffle-exchange hardest to obtain since we require the host network to
graph, and emulate a guest network of the same size with constant

5. an algorithm for sorting N-numbers in 0(log N) slowdown.
steps with high probability on an N-node shuffle- As a simple example, let 9 be the class of linear ar-
exchange graph with constant size queues. rays, and 7tbe the class of all bounded-degree connected

This research was supported by the Defense Advanced Re-
search Projects Agency under Contract N00014-87-K-825, the
Office of Naval Research under Contract N00014-86-K-0593, the
Air Force under Contract OSR-86-0076, and the Army under
Contract DAAL-03-86-K-0171. Tom Leighton is supported by
an NSF Presidential Young Investigator Award with matching
funds provided by IBM. Bruce Maggs is supported by an NSF
Graduate Fellowship. Arnold Rosenberg is supported by NSF
Grant CCR-88-12567.

networks. It is well known [181 that an N-node lin- our bounds will reflect tradeoffs between slowdown and
ear array can be embedded one-to-one in any connected inefficiency. In general,
bounded-degree N-node network with constant dilation S
and congestion. (By an embedding of a graph G into
a graph H, we mean a mapping : G -. H that maps

the nodes of G to the nodes of H and the edges of G to where C = NG/NH is the contraction of an emulation.
paths in H. The dilation of an embedding is the length
of the longest path ¢(e) corresponding to an edge of G. 1.2 The motivation
The congestion of an embedding is the largest number
of paths O(e) crossing a single edge of H. The load of There are several good reasons for studying the prob-

an embedding is the maximum number of nodes of G lem of emulating one network on another in a work-
mapped to a single node of H. In a one-to-one em- preserving fashion. For starters, this kind of analysis
bedding, the load is 1.) Hence any N-node bounded gives us an excellent means by which to compare the

degree connected network H can emulate any N-node computational power of one network relative to that of
linear array with constant slowdown, and thus there is another. More importantly, it gives us an automatic
a real-time emulation of the class g by the class 7(. way to compile and run algorithms designed for one

As another simple example, consider the more inter- kind of parallel architecture without loss of efficiency

esting problem of emulating a butterfly on a linear array. on another. This is provided, of course, that the ratio
We will prove that the class of butterflies cannot be real- of the size of the problem to the size of the machine is

time emulated by the class of linear arrays. (This should large enough. For example, we have already seen that a

come as no surprise, although the proof is not entirely small linear array (which has a very simple structure) is
trivial.) However, there is a simple work-preserving em- just as efficient in terms of work as a very large butterfly
ulation of the class of butterflies by the class of linear (which has a more complicated structure).

arrays with slowdown 2 1 . In particular, consider an More generally, the study of work-preserving emula-

N2Nv-node butterfly with nodes and edges tions lies at the heart of efficient parallel computing.
Indeed, one of the central problems in efficient parallel

V = {(i,w)I1 < i < N,w E {0 , 1}N), and computing is thetask of mapping a collection of pro-
cesses linked by precedence and/or communication con-

E = {((i, w), (i', w'))i' i+ 1, w' = w or -w = w('), straints onto the processors and routing network of a

where w(') denotes w except that the ith bit is changed. parallel machine so that

Then by mapping the 2 1v nodes of the form (i, w) (where 1. the processing load imposed on the processors is
w E {0, 1}N) to the ith node of the linear array, an N- balanced,
node linear array can emulate an N2N-node butterfly
with 2 N slowdown. 2. the communication between processors can be han-

Seeing this elementary example, one is tempted to died efficiently, and

ask if there are faster work-preserving emulations of a 3. the computation and communication can be sched-
butterfly on a linear array. In other words, can we emu- uled so that the necessary inputs for a process are
late a smaller butterfly (say with polynomial blowup) in available where and when the process is scheduled
a work-preserving fashion on a linear array? Although to be computed.
the proof is not obvious, the answer is no. There is
no polynomial-time work preserving emulation of the In other words, we would like to schedule the communi-
class of butterflies by the class of linear arrays. Any cation and computation in a way that takes maximum
such emulation requires exponential slowdown. Alter- advantage of the available hardware to minimize the
natively, we might wonder if a linear array can emu- completion time of the job.
late any bounded-degree network in a work-preserving In general, we can model the computation to be per-
fashion given enough slowdown. Again, the answer is formed by a DAG. Each node of the DAG represents a
no. Although the linear array can emulate a butter- process and each directe 4 edge (u, v) represents a com-
fly in a work-preserving fashion, it cannot emulate any munication that must ta piz2 between u and v. Typ-
expander, no matter how much blowup is allowed. In ically, this communicatio., sents data output from
fact, by combining these results we can conclude that u after u is completed whicii is to be input to v be-
even a butterfly is not sufficiently powerful to emulate fore v is started. The parallel machine can be modeled
an expander in a work-preserving fashion. as an undirected network. The nodes of the network

We also consider emulations that are not work- correspond to processors, and the edges correspond to
preserving. Such emulations are (by definition) ineffi- communication links between processors (and/or their
cient, and we define the inefficiency of such an emula- associated memories). The implementation of the com-
tion to be I = WHI/WG. In these terms, an emulation is putation to be performed on the parallel machine then
work-preserving if it has constant inefilciency. Many of corresponds to an embedding of the DAG in the network

so that nodes of the DAG are mapped to nodes of the slowdown. Is the reverse true? Somewhat surprisingly,
network and so that edges of the DAG are mapped to it is not. For example, Bhatt, Chung, Hong, Leighton. paths in the network. We may also need to construct a and Rosenberg [2] proved that any embedding of an N-
schedule that specifies the communication and compu- node mesh into an N-node butterfly with constant load
tation of the DAG that is being performed during each requires dilation Q(log N), the worst possible. At first
step of the network. This will be particularly important glance, it might seem that this result implies that there
if the parallel machine is synchronous. is no real-time emulation of a mesh on a butterfly. As we

In many applications, the DAG possesses a very nat- show in this paper, however, this is not the case. There
ural structure. For example, typical DAGs encountered is, in fact, a way to emulate T steps of an N-node mesh
in practice are derivitives of a binary tree, array, butter- computation in O(T) steps on an N-node butterfly for
fly, or shuffle-exchange graph. This is often due to the any T.
fact that the DAG is associated with an algorithm whose In order to understand how such a contradictory re-
inherent underlying structure is a tree or array (as is the suit is possible, we need to take a closer look at what it
case for many problems in numerical analysis and linear means to emulate TG steps of one network in Tq steps
algebra) or a butterfly or shuffle-exchange graph (as is on another. We start by modeling the computation per-
the case for Fourier Transform and data manipulation formed by the guest network G as a pebble DAG r. In
problems). Alternatively, it could be that the DAG was particular, we will have a pebble for every node-time
constructed from an algorithm specifically designed for pair (v, t) where v is a node of G and 0 < t < TG. (Pairs
use on one of these common parallel architectures. of the form (v, 0) correspond to inputs.) In fact, we may

Similarly, parallel networks also tend to be very nat- have many pebbles associated with a single pair (v, t),
urally structured and typically are configured as trees, which will correspond to the same computation being
arrays, butterflies, and the like. Hence, the mapping done more than once. (This is the trick that allows us
problem often consists of emulating TG steps of one NG- to emulate a mesh on a butterfly in real time.) To com-
node network (represented as a TGNG-node DAG) on an pute any pebble labeled (v, t), we need as inputs pebbles
NH-node network with a different structure. Ideally, we labeled (v, t - 1) and (v, t - 1), (v2, t - 1),..., (vk, t - 1),
would like to perform the computation in O(TGNG/NH) where v 1 , v2 , . ., vk are the neighbors of v in G. We use
steps, which is precisely the problem of finding a work- the directed edges of r to denote this dependence in the
preserving emulation of one network on another. usual way.

In practice, the guest network can be substantially Because many pebbles can have the same label, there
larger than the host network. For example, it is not un- are many DAGs F associated with any graph G. In order
common for a parallel machine with between 8 and 256 to emulate G on H, we only need to find an embedding
processors to be emulating array-based computations and an acompanying schedule of one of these DAGs in
involving hundreds of thousands of data points. In such H. Once an embedding and schedule of a DAG is fixed,
examples, even work-preserving emulations with expo- the emulation proceeds in a standard way. In particular,
nential slowdown may be within the scope of practical- during each step of the computation, a node of H can
ity. Indeed, the most important feature of the com- 1. make a copy of a single pebble that it contains,
putation is that it be work-preserving. In fact, the
notion of a work-preserving computation is important 2. send a single pebble to a neighbor, and/or
enough that it transcends high-level architectural is-
sues such as SIMI vs. MIMD, synchronous vs. asyn- 3. create a pebble with label (v,) provided that it
chronous, small scale vs. large scale, and fine grain vs. already contains input pebbles with labels (,, t - 1)
coarse grain. For example, even though issues involv- and (vit- 1),(v2,t- 1)...,(v&,t- 1).
ing the timing of computations and communications be- Initially, we will allow a node of H to have access
come muddied with asynchronous architectures, the un- to any input, although to use any of these inputs in a
derlying problem of embedding the computation so as to meaningful way will take time. By the end ,, the emu-
mimimize computational load and communication load lation, we must have computed pebbles 'vih all labels
(independent of timing) still remains. As a consequence, of the form (v, TG). (For purposes of si'nplicity, we will
wotk-preserving emulations are just as important for a use a pebble to denote the state of a processor of G
Dataflow Machine as they are for a Connection Machine at some particular time, as descriaed above. A more
(to mention two architectures at opposite ends of the general interpretation would be to use a pebble to de-
spectrum). note one of many items (e.g., data and/or functions)

stored within a processor. All of our results hold under
1.3 A closer look at the computational model the more general interpretation, although some of the

emulation results becrme more complicated.)
If we can find an embedding of a graph G into a graph By allowing several pebbles to have the same label, we
H with constant dilation, congestion, and load, then dramatically increase the number of possible computa-
it is fairly clear that H can emulate G with constant tion DAGs r that correspond to a TG-step computation

of G. This makes it more likely that we can find a com- bounded-dimension requires exponential time, and that
putation that can be efficiently emulated on some host it is not possible to emulate an expander on a butter-
network H (e.g., as is the case with emulating a mesh on fly in work-preserving fashion. These results provide
a butterfly), but it also makes the task of proving lower a curious contrast between the power of a linear ar- ____

bounds much more difficult. For example, in order to ray, butterfly, and an expander. By most standards, it W
prove that H cannot emulate G in real-time, we must would seem that a butterfly is closer in power to an ex-
show that for some TG, there is no DAG F associated pander than it is to a linear array. Yet a linear array can
with a TG-step computation of G that can be emulated emulate a butterfly in a work-preserving fashion, but a
in O(TG) steps on H. This can be a formidable task butterfly (or most any non-expander) cannot emulate
since r can look very different than G. Indeed, at the an expander in a work-preserving fashion.
very least, we must choose TG to be large since by al- In Sections 3-6 of the paper, we focus on the spe-
lowing redundant computations of pebbles, any 0(1) ciai case of emulations on arrays, complete binary trees,
steps of any N-node bounded-degree graph G can be butterflies, and shuffle-exchange graphs, respectively. In
computed in 0(1) steps on any N-node graph H. (This Section 3, we prove tight bounds on the slowdown re-
is because if T = 0(l), then any output pebble can quired for an array to emulate a tree, array or butterfly.
only depend on 0(1) input pebbles, which can be re- In Section 4, we prove thit there is a work-preserving
dundantly computed locally since every node of H is emulation of bounded-degree trees by complete binary
assumed to have access to all input pebbles.) trees with 0(loglog N) slowdown. We also give evi-

Note that when we prove a lower bound on the ability dence, but no proof, that there is no corresponding real-
of a graph H to emulate a graph G, it does not neces- time emulation for this class. (Proving that a complete
sarily mean that H cannot effectively compute the same binary tree cannot emulate a complete ternary tree in
result as does G (possibly by using a different algorithm, real-time is one of several challenging questions left open
for example). Rather, we are proving lower bounds on in this paper.)
the ability of H to perform the same step-by-step com- In Section 5, we show that the class of arrays with
putations as G when G is used in a general purpose bounded dimension can be emulated in real-time on a
way. Hence the term emulation. We suspect that our butterfly. This result is interesting because any one-to-
pebbling model is probably the most general model in one embedding of an array (with dimension 2 or more)
which we could hope to prove lower bounds. in a butterfly requires Q(log N) dilation [2], which sug-

Throughout the paper we will make use of the fact gests that a real-time emulation is not possible. The re-
that if there is an embedding of G in H with congestion suit takes on added significance given the fact that many
c, dilation d, and load 1, then there is an emulation of G parallel numerical algorithms are array-based while sev-
by H with slowdown 0(l + c + d). This follows for any eral parallel machines are butterfly-based.
H from the construction in (11]. When H is an array, We also describe a simple constant-congestion embed-
tree, butterfly, or shuffle-exchange graph, the schedule ding of an N-node shuffle-exchange graph in an N-node
can be computed on-line using the randomized routing butterfly in Section 5. This result has several impor-
algorithm in [11]. tant consequences. First, it can be used to provide

an elementary proof that the N-node shuffle-exchange

1.4 Our results graph can be laid out in O(N 2/log 2 N) area and in
O(N 3/ 2 1/ log3 / 2 N) volume. Both results are optimal.

The technical portion of this paper is divided into five The area bound was known previously [7], but the proof
sections. We commence in Section 2 with some general was much more difficult (as were the proofs for sev-
techniques for establishing the existence or nonexistence eral nonoptimal layouts for the shuffle-exchange graph
of a work-preserving emulation. In particular, we de- [6, 10, 12, 19]). The 3-d layout bound is new and was
scribe two general methods for proving lower bounds not obtainable by any of the previous approaches to the
on the slowdown of a work-preserving emulation. The 2-d layout problem. Second, we apply the result to de-
first method is based on dilation considerations and ap- rive an 0(log N)-slowdown work-preserving emulation
pears in Section 2.1. As an application of this method, of the shuffle-exchange graph on the butterfly.
we prove that any class of low diameter networks (such In Section 6, we prove the reverse, namely, that there
as complete binary trees) cannot be emulated in real is an O(log N)-slowdown work-preserving emulation of
time on any class of networks that has poor expansion the butterfly on the shuffle-exchange graph. Taken to-
properties (such as arrays of bounded dimension). gether, these results come very close to resolving a long

The second method is based on congestion proper- open question concerning whether or not the butterfly
ties and is presented in Section 2.2. Here we describe a and shuffle-exchange graph are computationally equiva-
general method for proving that a work-preserving em- lent. In particular, we show that up to NC emulations,
ulation requires a large amount of time, or that it is im- the butterfly and shuffle-exchange graphs are equivalent A
possible altogether. As an example, we prove that any in a work-preserving sense. Thus, for many problems,
work-preserving emulation of a butterfly on an array of they can be considered to be computationally equiva-

lent. 2.1 Distance-based lower bound
As a consequence of the emulations in Section 6, we The following theorem shows that if the guest graph

* also obtain a real-time emulation of bounded-degree ar- grows faster than the host graph, then any emulation of
rays in the shuffle-exchange graph, and we show how the guest by the host must be slow a
to sort N numbers with high probability in O(log N)
steps on an N-node shuffle-exchange graph. Although Theorem 1 Let H = (VH, EH) be an N-node host
the proof of the sorting bound is elementary, it resolves graph and G = (VG, EG) be an NG-node guest graph,
an open question concerning the difficulty of random- and suppose that there are integers rf and rG such that
ized sorting algorithms on the shuffle-exchange graph. 7, TO

Previously, such an algorithm was known for the but- max Z bH(u, i) < min bG(v, j).
terfly [11, 15, 171 but that algorithm made crucial use of UEVH ,EVa _=,
the recursive structure of the butterfly, a structure not Then any emulation of TG rG steps of G by H has
present in a shuffle-exchange graph. slowdown

S > (rT + 1)/2rG.
1.5 Previous work

There has been a great deal of previous work on graph Proof: The basic idea is to find a sequence of TG/re
embeddings with the intent of showing that one network pebbles in any TG-step pebble DAG of G such that each
can or can't emulate another network efficiently [2, 3, 4, pair of pebbles is separated by at most rG guest time
5, 11, 16]. Many of the results were positive and proved steps but are created in H at least rH host time steps
things like "all N-node binary trees can be emulated in apart. As we shall see, such a sequence exists only if
constant time on an N-node hypercube." There were the slowdown S = TH/TG is at least (rH + 1)/ 2 rG.
also some negative results, but because of the lack of We start the sequence with the last pebble created
a good model, their significance is now less clear. For by H. Suppose that at time TH some node u0 E VH
example, even though an embedding of a mesh into a creates a pebble for DAG node (vo, to), where to = TG.
butterfly requires dilation Q2(log N), we now find that a The pebble for (vo,to) cannot be created by H until
butterfly can emulate a mesh with constant slowdown, pebbles for all of its predecessors in the DAG are cre-

The notion of work-preserving emulations in PRAM ated. In particular, there are at least E, = 6G(voj)

models has previously been studied [8, 131 and served precedessors for time steps to - rG through to - 1. We
to motivate this work. Related problems of scheduling want to show that the pebble for at least one of these
computations on fixed-connection networks have also predecessors must have been created by the host graph
been studied [14]. before time TH - rH. The pebble for every predecessor

of (vo,to) that is created at distance i from u0 in H
must be created at or before time TH - i. Thus at most

2 Lower bounds = bH(uo,i) pebbles for predecessors of (vo,to) are

In this section we present lower bounds on slowdown created by H between time steps TN - rH and TH - 1.
and tisefficiny. Losey sp e aki lower bounds Since maxEv, F7 i bH(u,i) < minEvG T 1 bG(v, j),
and inefficiency. Loosely speaking, these lower bounds the pebble for some predecessor (vi, ti), t > TG -
apply when the guest graph expands faster than the T - G
applygrwhn The gust gwrh end fa se tn hew must be created by the host graph at or before time
host graph. The first lower bound can be used to show T T)

that any emulation of a complete binary tree by a linear TH - (rH + t)d
arra ha slodow f2(HI og H). he econ ca be We can repeat the argument to find a pebble for aarray has slowdown I'2(NH/ log NH/). The second can be predecessor (v 2 , t2), t2 > TG - 2rc, of (vi, t1) that must

used to show that a butterfly cannot perform a work- be created by the host at or before time TH - 2(i + 1).

preserving emulation of an expander graph, that any and so on. Eventually we obtain a pebble (vk, tk) such
work-preserving emulation of a butterfly by a lhnear ar- that rG > tk > TG - kre. This pebble must be created
ray H requires slowdown at least 2 (N), and that any by the host at or before time TN - k(rHt + 1). We assume
work-preserving emulation of a k + 1-dimensional mesh that input pebbles are created at host time step 0, and
by a k-dimensional mesh H requires slowdown at least that the emulation begins with time step 1. Thus, TN -

H(N.t/k). All of these lower bounds on slowdown are k(rTt + 1) > 0. Combining these inequalities, we have
tight.

Before proving the lower bounds, we need to intro- THf/TG > (rtN + 1)/ 2 7G
duce some notation. For an undirected graph G = for TG > rG. 13
(V, E), let 6(u, v) be the length (number of edges)

* of the shortest path between nodes u and v in G. Corollary 2 Any such emulation has inefficiency
Let BG(u,i) = {v E V6(u,v) < i} be the set of
nodes within a distance i of u in G and let bG(u, i) = I
jBG(u,i)j. We call bG the growth function of G. rGNGI

I

Corollary 3 Any emulation of a complete binary tree, as either an importer or a creator. If a block is an ir-
G, by a k-dimensional mesh, H, has slowdown at least porter, then many pebbles for the block cross region
Q ((NG/logk NG)I/(k+ 1)). perimeters. If a block is a creator, then some region

creates many pebbles for the block. If the majority of
Proof: Apply Theorem 1 with rG e(log Na), and the blocks are importers, then the time required by the

rH = E ((NG log Na)/(k+i)). - host to pass pebbles across the perimeters of the re-
gions large. Otherwise, the time required to create the
pebbles is large.

2.2 Congestion-based lower bound Before we can get started we need one more piece of
notation. For each node v in G there is at least one

The second lower bound requires a little more notation. pb at ed bor each guest time st etwe

Let G = (V, E) be an undirected graph as before. For pebble created by H for each guest time step t between

a set U C V, we define the i-neighborhood of U to be c and TG. The first pebble created for eachrvtime t is

the set of nodes within a distance i of some node in called the t-primary pebble for v. For each value of t

U, .Ni(U) = UEuBG(u,i). We define an (R,f(R))- there are exactly NG t-primary pebbles. The t-primary

decomposition of G to be a partition of V into IVI/R pebbles are ordered according to the order in which they
sets of nodes (regions) such that each contains R nodes are created by H, with ties broken arbitrarily. We callsetsof ode (reion) sch tat achcontinsH ndes the first 3Na/4 t-primary pebbles the i-early pebbles

and has a 1-neighborhood of size at most f(R). the ast 3N14 the tmary pebbles .

The last graph parameter that we need, ZG, is best and the last 3NG14 the t-late pebbles.
described in terms of a simple game. The player starts We begin with the definition an importer block. Con-
by choosing a nodes of a connected graph G and placing sider a block from step t to t - 3,3 + 1. The aver-
by choin a nod.Te ofayerisive a co glaci n g ca age number of t-early pebbles created by each of the
them in a bag. The player is given a collection of ia, NH/R regions in the decomposition of H is at least
o _<p < 1, tokens to play with. The game is played init
rounds, each consisting of two steps. In the first step, creates at least p/2 i-early pebbles. We say that a it-
all of the neighbors of the nodes in the bag are added to early pebble is i-busy if it is created by a --busy region.
the bag. In the second step, the player may exchange At least half of the i-early pebbles are t-busy. Thus,
tokens for nodes in the bag on a one-for-one basis. Let there are at least 3NG18 t-busy pebbles. Suppose that
Xi be the set of nodes in the bag at the end of round tere re aleas / 2 i -bsy pebbles. e tati, and let Yi be the set of nodes removed in the second a -busy region creates s p/2 -bsy pebbles. We saystep of round i. Then X is given by the recurrence tht the region is an importer if it imports at least s/2

Xi = Al(Xi_1) - 1'. The game ends when the number pebbles for time steps between t - 1 and t - 23. We

of nodes in the bag exceeds it capacity, c, at the end say that a block is an importer if every t-busy region is
an importer, or if some region imports at least 3Na/16

of a step, where c < NG. If k is the number of rounds p ote or if ste region tm-r1 at t 3NG116

played, then [Xi < c for i < k, JXij > c for i = k, pebbles for time steps between i-land t - 20. In a
k importer block, a total of at least 3NG/16 pebbles for

and i=1 JY[1 ca. The goal is to play as many rounds time steps between t -l and t - 2 are imported by all
as possible. Let zG(a, C, c) be an upperbound that is of the regions.
non-increasing in a on the length of the longest possible If at least half of the Ta/3/3 blocks are importers,
game. then we can find a lower bound on inefficiency by com-

puting the time required to import pebbles. In this
Theorem 4 Suppose that H = (VII, Em) is an NH case, the total number of pebbles imported by all of
node host graph with an (f(R))-decomposition, and the importer blocks is at least TGNG/320. The host
that 0 = (VG, EG) is an NG-node guesi graph. Lei time required to import these pebbles is at least T11

r, (p N) , G(3NR 1 NG TGNGR/32/3N~f(R), because at each host time step,
max fz ,0, z 4 , '2' 2)" each of the NH/R regions can import at most f(R) peb-

bles. In this case,
Then for any emulation of G by H where TG > 3/, 1 > R/323f(R).

I>minI R NH} As we shall see, if a block is not an importer then
_ 32,3f(R)' 96 R some region must create many pebbles for the block.

Hence the name creator. In a creator block there must
be some t-busy region RZ that creates s > p/2 t-busy

Proof: The basic strategy is to show that ei- pebbles but imports fewer than s/2 pebbles for time
ther the host spends a lot of time passing pebbles steps between t - 1 and t - 2/3. The t-busy pebbles
across the perimeters of the regions in the (R, f(R))- created by RZ cannot be created until pebbles for all of
decomposition, or the host spends a lot of time creating their predecessors in the pebble DAG are created. Since
pebbles. We will break the TG guest time steps into ZG(s, 1/2, NG/2) <_ -G(p/2 , 1/2, NG/ 2) :/3, RZ imports
blocks of 33 consecutive steps and classify every block at most s/2 pebbles for time steps between t - 1 and

t- ZG (s, 1/2, NG /2). Thus)Z must create at least NG /2 Corollary 8 Any work-preserving emulation of a j.
pebbles for time step t-ZG(s, 1/2, NG/2). Furthermore, dimensional mesh G by a k-dimensional mesh H, j > k,

* since 7 imports at most 3NG/16 pebbles for time steps has slowdown at least Q(N(j-k)/k).
between t - 1 and t - 2/3, it must create at least 5NG/16

pebbles for every time step between t-ZG(s, 1/2, NG/2) Proof- Ap-

and t - 23. For each of these time steps, at least NG/16 ply Theorem 4 with R = (((NG/j N 1 1)k/(k+1)), f(R) =

of the pebbles are created for nodes whose (t - 2/3)- O(R(k-1)/k), and /3 O(N'/j). The inefficiency is at
primary pebbles are (t-2/3)-late pebbles. We call these least I > 0l((Njf/NL)l/j(k+i)). 0

pebbles the descendant pebbles.
We have chosen the descendant pebbles so that

none are created by H until all of the descendant 3 Emulations by arrays
pebbles for previous blocks have been created. The Although the arrays cannot perform real-time emula-
early pebbles for all time steps at or before t - 23 - tions of graphs with small diameter, we can show that
zG(NG/ 4 , O,3NG/4) must be created before the (t-2/3)- they can perform work-preserving emulations of com-
late pebbles because 3NG/4 nodes in G lie within a plete binary trees, other arrays, and butterflies. In each
distance zG(NG/ 4 , 0, 3NG/4) of the nodes correspond- case, we find an embedding of the guest graph into the
ing to the first NG/4 (t - 2/3)-primary pebbles. Since array with acceptable load, congestion, and dilation.
ZG(NG/4,0, 3NG/4) < ,, the early pebbles for previous The edges of the guest graph are emulated by routing
blocks must be created before the (t - 2/3)-late pebbles. packets between the nodes of the linear array. All of the
Furthermore, the (t - 2/3)-late pebbles must be created following results can be shown to be tight by Corollar-
before the descendant pebbles, which in turn must be ies 3, 8, and 7.
created before the t-busy pebbles for R?.

If at least half of the blocks are creators, then we Observation 9 An N-node k-dimensional
can derive a lower bound on inefficiency by summing mesh can perform a work-preserving emulation of an
the time to create the descendant pebbles for each of yr(k+I)/k/log N-node complete binary tree.
the creator blocks. For each of TG/63 creator blocks, Proof: An N(k+)/k)/ log N-node complete binary tree
at least /3N/16 descendant pebbles are created by a can be Nmbed)/d)/log N-node cometinar mee
single region. The host time for each block is at least can be embedded m an N-node k-dimensional mesh

* /3NG/16R. The host time for all of the creator blocks is with load O(N1/k/log N), dilation O(N/ log N), and
at least TGNG/96R and the inefficiency is at least congestion O(N'/(5 +Q). C

I > Nif/96R. Observation 10 An N-node k-dimensional mesh can
perform a work-preserving emulation of an NJ k-node

Combining the two cases proves the theorem. 0 j-dimensional mesh, j > k.

Corollary 5 A k-dimensional mesh H cannot perform Proof: An Ni/k-node j-dimensional mesh can be em-
a work-preserving emulation of an expander graph G. bedded in an N-node k-dimensional mesh with load

N(i - k)/lk, congestion N(j - k)/k, and dilation 1. 0Proof- Apply Theorem 4

with R = E((NH log NH)k/(k+')), f(R) = O(R(k-1)k), Observation 11 An NH = nk-node k-dimensional

and 3 = O(log(NH/R)). The inefficiency is at least mesh H can perform a work-preserving emulation of an
I > f2((NH /logk NH) I/(k+U). 0 NG = n2n-node butterfly graph G.

Corollary 6 A butterfly network H cannot perform a Proof: An n2n-node butterfly graph with 2n rows and
work-preserving emulation of an expander graph G. n columns can be embedded in a NH = nk-node k-
Proof- Apply Theorem 4 with dimensional mesh with load O(2'/nk-1), congestion

R = O(NmloglogNH/logNff), f(R) = O(R/logR), O(2n/nk-'), and dilation 0(n). 0

and /3 = O(log(NH/R)). The inefficiency is at least It is interesting to note that every connected network

I > Q(log NH/log log NH). 0 can perform a real-time emulation of a linear array.
Hence, Observations 9 through 11 can be modified to

Corollary 7 Any work-preserving emulation of a but- hold for all connected networks.
terfly G by a k-dimensional mesh H has slowdown at

least 2" (NH/). 4 Emulations by complete binary trees

O Proof: 4.1 Work-preserving emulations of bounded-
Apply Theorem 4 with R = O((NH log NG)k/(k+)), degree trees
f(R) = O(R(k-)/), and /3 = O(logNG). The inef- In this section, we show that any Nloglog N-node for-
ficiency is at least I > f((NH/ logk NG)I/(k+l).- 0 est with maximum degree A can be embedded in an

N-node complete binary tree with load O(A log log N), Thus, at level i + 2, we have Ni+ 2 _< (5/6)N+ 1 + Ak.
congestion O(A 2 log log N), and dilation O(log A). As In general, Ni+j is given by the recurrence
a corollary, there is a work-preserving emulation with Ak+ANj j= I
slowdown O(loglogN) of the c' - of bounded-degree Ni+j < (k + A 1
forests by the class of complet, iary trees. 1 (5/6)N+ 1 1 +Ak 1<j d

In constructing the embeddiig, we use the following Solving the recurrence yields
weighted separator theorem for forests.

Theorem 12 Suppose that F = (V, E) is a forest where We are now in a position to calculate the load and
each vertex has been assigned some non-negative weight. the congestion. The preceeding argument shows that
Then it is possible remove a set S of k vertices such from for d E O(log A) and Ni E O(Ak), we have Ni+d _

V such that the remaining vertices can be partitioned Ni. Thus, in every simple path between a node at level
into two subforests F1 and F2 such that no edge connects i and a node at level i + d, where i is a multiple of
a vertex in F1 with a vertex in F2 , and each contains

)k/2/2 erties nd a mot 5/ of A, the congestion starts at O(Ak) at level i, rises to
at most IV (1 + (2/3) veat most O(A 2 k) at level i + 1 and proceeds to drop
the total weight. back down to at most O(Ak) at level i + d. Thus, the

Proof: Omitted. congestion of the embedding is at most O(A 2 log log N).
Weoof begitted. bHow large can the load be? At each node of the binaryWe begin by using Theorem 12 to find a set S tree we embed a separator of size k. For every i that

of k E O(log log N) nodes that partitions the forest is a multiple of d, we also embed a set nodes of size

F = (V, E) into two subforests, each containing at most Ni O(Ak). Finally, at the leaves we embed forests of

IVI(l + 1/log N)/2 vertices. We embed S at the root of size N loglog N((1+ /log N)/2)l N, which is at most

the binary tree and then recursively embed one of the O(log log N). Thus the load is at most O(A log log N).

subforests in the left subtree of the root, and the other

in the right. 4.2 Congestion lower bounds for a complete
At levels below the root, we use Theorem 12 to si-

multaneously partition the vertices of the forest and the ternary tree
edges connecting the forest to vertices that are embed- In this section we show that any embedding of an N-
ded higher in the binary tree. Let Fi = (Vi, E,) be a node complete ternary tree in "n N-node complete bi-
forest to be embedded in a subtree rooted at a level i nary tree with load at most O(Vo/g og7) in which the
node vi in the binary tree. Let Ni be the number of leaves of the ternary tree are mapped to the leaves of the
edges connecting Fi to vertices embedded higher in the binary tree has congestion at least (V/Tog log-N). This
binary tree; Ni is the congestion of the binary tree edge lower bound suggests, but does not prove, that real-time
connecting vi to its parent. We assign each vertex of Fi emulation of a complete ternary tree by a complete bi-
a weight equal to the number of neighbors it has that are nary tree is impossible.
embedded higher in the binary tree. Using Theorem 12,
we find a set Si of k vertices that partitions F into two

subforests, each of size at most IV(1 + 1/log N)/2, and ternary tree in an N-node complete binary tree with

each having at most (5/6)Ni edges to vertices that are load at most O(Vl og 7 ') in which the leaves of the

embedded higher in the tree. We embed the vertices of ternary tree are mapped to the leaves of the binary tree

Si at vi and recursively embed one of the subforests in has congestion at least Q(Vlo~ g og N).

the left subtree of vi, and the other in the right subtree. Proof: Omitted.
To limit the dilation to some integer d, whenever i

is a multiple of d we embed at vi not only Si but also
all of the vertices in Fi that have at least one neighbor
embedded somewhere higher in the binary tree. Before describing our emulations we give some notation

We must now show how to choose d so that both the concerning the butterfly graph. Recall that a butter-
congestion and the load of the embedding are small. fly graph node can be represented by a pair < i, w >.
Consider any simple path from a level i node vi in the We refer to i as the node's level. We refer to w as the
binary tree to a level i + d node, vi+,d, where i is a mul- node's position in level (PIL). We consider the nodes of
tiple of d. At level i, we embed a separator of size k and the butterfly with the same PIL to be in a row. We con-
at most Ni other vertices that have at least one neighbor sider the inputs of the butterfly to be the nodes whose
embedded higher in the tree. Since each of these ver- representatives are of the form < 0, w >, i.e., the level
tices has at most A neighbors, N.+j < Ak + AN/. At 0 node of a row. In the following sections we will con-
level i+1, we embed a separator of size k that partitions nect the inputs of a butterfly to each other via paths
F,+. into two subforests, each having at most (5/6)N+ 1 through the butterfly. We make use the following theo- w
edges to vertices embedded higher in the binary tree. rem of Benes [1].

butterfly is partitioned into subbutterflies of size Nk+I,
and one submesh is assigned to a subbutterfly.

1.... 1The emulation of the sk x sk mesh will be divided
into fk/fk+l phases. In each phase we first attempt

a subbutterfly. If nothing else were done, any node ofI I a submesh at distance 6 from the border of the sub-
-mesh would not be able to be emulated for more than 6

_ . . steps because the pebbles that it computes will depend
on pebbles from another submesh. However, for every

node v on the border of a submesh there is a node v in
another subinesh emulating the same node of the mesh
which will be able to successfully emulate fk+l steps

S A+1 fA 1 because it is located at distance fk+1 from the border
of the submesh. We will show how to provide a path

Figure 1: Division of the mesh into submeshes in the butterfly between the two nodes in the butterfly

emulating v and v' of length O(nk). When the node

Theorem 14 The inputs of an N log N.node butterfly emulating v' computes v's pebbles it will send copies

can be connected in any permutation by a set of paths of the pebbles to the node emulating v along this path.

such that each path has length at most 2 log N, and each Once the node emulating v starts receiving pebbles from

edge in the butterfly is used at most twice (once in each the node emulating v' it will resume the emulation. As

direction). the node emulating v resumes the emulation, nodes that
were emulating nodes of the mesh that were waiting for
pebbles from v will be able to resume their emulation.

5.1 Work-preserving emulationa of binary trees In order for all such pairs of nodes to be able to send

When the Bhatt, Chung, Hong, Leighton, Rosenberg pebbles back and forth simultaneously without slowing

result [2] that a butterfly can emulate a complete bi- down the emulation, it will be necessary to choose the

nary tree in real-time is combined with the material in paths so that a most a constant number of paths will

Section 3, we find that there is an 0(loglogN)-time share an edge, and this must Be true simultaneously for

work-preserving simulation of the class of binary trees all levels of the recursion. In order to provide the paths

on the butterfly. Whether or not this emulation can be connecting nodes in the butterfly, we will not use all

performed in real-time remains an open question. subbutterflies in the partition of the butterfly for emu-
lating submeshes; some subbutterflies will be used only
for providing connections between subbutterflies.

5.2 Real time emulation of arrays We now describe how to embed the nodes of the mesh

Theorem 15 For constant q, T steps on a "17'N ... x in the butterfly and to choose the paths connecting
,7 q dimensional mesh can be emulated in O(T) steps copies of nodes.
on a butterfly graph with O(N) nodes. So now suppose that we have chosen the embedding

of the nodes of a sx+l x sk+l mesh in a Nk+l node
Proof. We prove the theorem for q = 2; for other butterfly and the paths connecting corresponding nodes

values of q the proof is similar. We will only prove the within the subbutterfly We will further require that for

theorem when T > log N; when T < log N the proof is each node v on the border or at distance fk+l from the
similar, border of the sk+l x sk+l mesh (we will refer to the

We will prove the theorem using recursion. We will set of all such nodes as F+j), that there is some node
divide the mesh into submeshes and the butterfly into of the butterfly < 0, x, > and a path that connects
subbutterflies and recursively emulate each submesh in < 0, z, > to a node < i, yt, > that emulates v in the but-
a subbutterfly. Since submeshes will need pebbles com- terfly such that pebbles can be sent between < 0, x, >
puted in other submeshes, we will create connections and < i, y, > without slowing down the simulation of
between the submeshes. the sk+l x sX+l mesh. Furthermore, x, will have the

Suppose that we know how to emulate fk+l steps of a property that b,+ , _-1 ... bo equals 10.. •0 where fk+1 is
sk+ x s+l mesh on a butterfly with Nk+l = nk+ 1 2nk+t a number that will be specified later, and for all v in
nodes, nk+l is a power of two, and Ak+- = mk+lNk+l, Fk+1, their values of z, will share a common value of
where sk+1 ,fk+,, Nk+1, and mk+l are numbers that b2ek+i-I ... b,+, that can be chosen arbitrarily, where

* will be specified later. To show how to emulate fk steps bn +1-1 .. bo is the binary representation of z,. We
of a sk x sk mesh on a butterfly with Xk nodes, we again divide a sk x sk mesh into submeshes as decribed
first divide a sk x sk mesh into sk+l x sk+i slightly in Figure 1. Now however, we modify this method for
overlapping submeshes as shown in Figure 1. Then the dividing the mesh into submeshes. We wish to require

that all nodes in Fk in the mesh will lie in Fk+1 for any equals 10 .-. 0, and such that for all v in Fk+1 in the
submesh in which they are contained. In order to do submesh, the PIL's for the respective PIL's of ul share
this, we will shrink the sizes of submeshes in at most a common value of b, +2ek+,-l ." bC+f+, that can be
two rows and two columns of submeshes. When we re- chosen arbitrarily. We choose b,+2,,+,.l ... ba,+eh+, to
cursively emulate fk+l steps of a submesh that has had be b,,+,-i ... b0 , which is the same for all nodes in u's
its size reduced we will consider it to be part of a larger subbutterfly. We now choose u2 to be the node in the
mesh that has dummy nodes. butterfly at level zero whose PIL is obtained by convert-

We will now partition the butterfly with N- nodes ing the ck+l least significant bits of ul's PIL to 10... 0.
into subbutterflies with Nk+i nodes. For a node in a By our choice of subbutterflies to be used for simulat-
butterfly we will denote the binary representation of the ing submeshes and our choice of bQ+2,+1-1 ... b+e,+1
node's PIL by b,,1• ... bo. Each subbutterfly will con- for ul's PIL we know that the paths from ul to u2 for
sist of all nodes of the butterfly with the following prop- different choices of v are disjoint. One similarly chooses
erties: there exists at such that a is a multiple of nk+1 nodes in the buttefly u' and u' for v'. For all choices
possibly zero and such that all nodes in the subbutterfly of u2 and u' we now choose paths connecting u2 and
share common values of b,,,-• ... b0 and bk ... ba+nk+l, u' by routing a permutation through nodes of the but-
and a < i < a + nk+1 - 1. terfly which have PIL's whose ck+1 least significant bits

Subbutterflies will be used to emulate submeshes. equals 10 ... 0 using one pass up through the butterfly
However, we will not use all butterflies to emulate sub- and one pass down [1]. None of these paths will conflict
meshes; some subbutterflies will be used to create con- with any previously chosen paths.
nections between subbutterflies that will be simulating To finish the description of the embedding, we must
submeshes. We will not use a subbutterfly if there there show that for each node v in Fk in the mesh being em-
exists - such that -y is a multiple of nk+i, 7 > a (where ulated, that there is a node u in the butterfly that can
a is the ot used to describe the nodes in the subbutter- be connected by a path of length O(nk) to some node
fly) and bT+Ek+Il --- by equals the string 10.. . u for all w in the butterfly which is emulating v so that pebbles
nodes in the subbutterfly, or if a > 0 and beh+l - 1 ... b0 can be sent from u to w or w to u without slowing down
equals the string 10-.. 0 or 0... 0. the simulation of the mesh, and such that u is chosen so

We must make sure that the number of subbutterflies that it has level zero, that the ek least significant bits of
to be used for simulating submeshes is greater than or its PIL equal 10-.. 0, and so that b2,,_-1 ... b,, is some
equal to the number of submeshes to be emulated. The arbitrarly chosen number that is common for all u. We
number of submeshes is at most first assign nodes in the mesh in Fk to nodes in the but-

sk)2 terfly with the required characteristics, so that at most
(s+1 -k i+2 one node of the mesh is assigned to a node in the butter-

fl,. For this to be possible there must be enough nodes

(the additive two is due to the shrinkage of the size of in the butterfly with the required properties, and this
some submeshes). The total number of subbutterflies in will be true if
the partition of the butterfly is Nk/Nk+l. The number log 8s < nk - 2fk (2)
of subbutterflies that will not be used for simulating
submeshes is at most We already know that for a node v in Fk, that there will

nk)2 be some node u' in the butterfly with level zero whose
k 1 2+ k k+1+ least significant bits equal 10-.- 0 which is con-

nected by a path of length O(nk) to w; this is because

Thus there will be enough subbutterflies if when we divided the mesh into submeshes, we required

2 v to be located in Fk+1 of any sibmesh in which it
s_+ _+

+
_ 2 was contained, and we have previously described a path

from w to the desired node u'. We now again connect
Nk (nk 22all corresponding pairs of u's and u"s using permutation
N. _ . 2 ,_+k+1" (1) routing as before.

+ +l We now choose the values of sk A, f 4, N k and mk so

We now describe how to choose the paths. We wish that (1) and (2) are satisfied. We first denote by w(.V)
to choose a path connecting two nodes u and u' that the smallest value of k such that N20 - < 2. We let
are emulating nodes v and v'. We will again use at Ck = - log nk. We let so = '/T, and for k > 0, choose
to describe the subbutterfly in which u is located as sk and nk so that N1 ° " < sk _< (N'°-*) , n is a power
we did previously. Since v is in Fk+1 for its submesh, of two (N4 = nk2"'), and
we know that there exists some node ul in the sub- oa

butterfly such that ul's level in the butterfly is c (it w(N)
has level zero when considered as part of the subbutter- N = s2 f in,

fly), and such that the bits b,+e+,-. .. b,, in u1 's PIL j=,+l

where That is, if the set of long paths can be decomposed
2 / into a constant number of (partial) permutations of the

m = -- +2- (,• inputs of the butterfly, the long paths can be embedded
sk fk sI 1- 2 - with constant congestion. It is easy to see th"t we can

embed the long paths in this manner when there are at
We kow hatwe an coos suh ask snceforall most a constant number of endpoints of long paths in

possibles values of sk in the specified range the product a s tterfly ro eroute a path e
any single butterfly row. (We route a path firom each

w(N) endpoint to to the input of its row. This leaves us with
J mj. a constant number of "Benes routings" to perform.)

j=k+l So we map the nodes of a shuffle-exchange graph to
the nodes of a butterfly graph so that

is bounded. We also choose fo = T, fi = min{T, V'sT},

and for k > 2, fk = V1. 1. at most a constant number of shuffle-exchange
We now consider the time required for the emulation. nodes are mapped to any one butterfly node, and

Let T be the time to emulate fk steps of a sk x sk mesh
on a N node butterfly. The emulation is divided into 2. each butterfly row contains at most a constant
fk/fk+1 phases. Each phase requires time Tk+1 +O(nk) number of shuffle-exchange nodes which have any
and nik is 0(logsk). Thus neighbor mapped to a distant node in the butterfly.

Tk =-k (Tk+l + O(log S)) Short paths only contribute constant congestion since

+1 they have constant length. Long paths only contribute

and therefore the total time for the emulation constant congestion since we can route any permnta,-

w(N) f tion with congestion 2, and we only need to route a

T(N) ... 9 log sk constant number of (partial) permutations. Also, the

k 0 o f+fk / length of the short paths is constant and the long paths

is O(log n).
(N fo log sk In particular, we map the nodes of a N = 2

k- fk+1 node shuffle-exchange graph to the nodes of a (n + 2 -
=0 log n)2n+ 2- 1

o
g n - 4N-node butterfly graph. Each node

Tw(N) 109 sk in this N-node shuffle-exchange graph has n bits in its
k T __ label. A node in the butterfly can be specified by a
O() row represented by n + 2 - log n bits, and a level in the

S(T). row. The level in the row corresponds to a bit that can
be flipped to enter another row. Thus, we first asso-
ciate a shuffle-exchange node with a particular row of
the butterfly by removing log n - 1 adjacent bits of its

5.3 A constant congestion embedding of the label none of which are the least significant bit, then we
shuffle-exchange graph in a butterfly pick the level in the row which corresponds to where the

In this section, we show how to embed an N-node least significant bit of the shuffle-exchange node appears
shuffle-exchange graph in an O(N)-node butterfly graph in the row's representation.
with constant congestion and O(log N) dilation. We map a shuffle-exchange node w to a node in the

The N-node shuffle-exchange graph is defined for ev- butterfly as follows,
ery N which is a power of two. Each node of the
(N = 2k)-node shuffle-exchange graph is associated 1. Consider the longest string of zeros in w ignoring
with a unique k-bit binary string ak.1_...ao. We call the least significant bit, break ties by choosing the
this string the label of the node. Two nodes, w and w', first one from the left.
are linked via a shuffle edge if w' is a left or right cyclic
shift of w. Two nodes, w and w', are linked via an ex- 2. Pick out log n - 1 bits as follows;
change edge if w and w' differ in the least significant
bit, a0 . (a) If possible choose the log n - 1 bits after the

A constant congestion embedding requires that very zeros and before the lsb,
few edges of the shuffle-exchange be mapped to long (b) otherwise if possible choose the log n - 1 bits
(more than constant length) paths in the butterfly. In preceding the longest string of zeros,

* addition, these paths must not overlap each other very
often. To ensure this, we use the afore-mentioned the- (c) otherwise choose the last log n - 1 bits of the
orem of Benes concerning a butterfly graph's ability to string of zeros (note that in this case more
embed a permutation on its inputs, than n - 2 log n bits are zeros).

3. Treat these bits as a number (it will be in the range to butterfly nodes. Thus the mapping maps two shuffle-
0... 2), call this number s, and the sequence of bits exchange nodes to two nodes that only differ in the bit
a,. that can currently be changed by a butterfly edge. Thus,

any exchange edge needs only flip the bit at the node's
4. Remove the bits of s from w, extend the chosen level, which only requires a path of length 2. Thus all W

string of zeros on the right (left) by a 01 (10) if the exchange edges are embedded in short paths.
bits were removed from the right (left) of the block Now consider the.shuffle edges. We show that at most
of zeros, and cyclic shift the resulting string so that a constant number of shuffle edges leave any row of the
s bits appear after the longest string of zeros, this butterfly. (It is easy to see that all the shuffle edges in a
specifies the row. row are mapped to single edges in the butterfly graph.)

Again, consider the inverse mapping of a butterfly node,
Symbolically, we map w = zOka,yb to row u0k+ 1 v, (p, r), to two shuffle-exchange nodes. The necklaces of

or we map w = za,O'yb to row ulOk+lv, with ybz = vu the domain nodes of row r's nodes, are the same for
and lvi = s. (Note that we map to a row with a unique most of the row. They change only at certain transition
longest string of zeros not straddling the bit which is levels in the row; levels, p, in the row where the position
at the level of the butterfly node.) It is easy to see of the longest string of zeros not straddling p changes,
that the least significant bit of w, b, is somewhere in or levels in the row where we become unsure or sure of
the representation of the row. We choose the level in which side of the zeros to replace the removed bits, a,.
the row to correspond to the position of b in the row's The position of the longest string of zeros not strad-
representation. dling p only changes at two points; inside the row's

We must argue that the mapping achieves condition unique longest string of zeros. When the row level is
1 and 2 above. within logn bit positions to the right of the longest

First, we introduce some more notation. We define string of zeros, we know that pieces of two shuffle-
a necklace to be a set of shuffle-exchange nodes which exchange necklaces could have been mapped to the row.
are connected only by shuffle edges. Alternatively, a Outside this range we know that only one necklace is
necklace is a set of nodes having labels which are cyclic mapped to the row: Inside the group of zeros the bits
shifts of each other. A necklace's label is the lexico- were definitely taken out before the group of zeros, and
graphically minimum label of its nodes. We can specify further to the right they were definitely taken out after
a shuffle-exchange node by the label of its necklace and the group of zeros. Thus entering this stretch and leav-
the position of the least significant bit of the node's label ing this stretch gives us two more bad levels. Thus we
in the necklace's label. have four transition levels in all, and for each of these

We define the domain of a butterfly node to be the at most four necklaces could enter or leave the row at
set of shuffle-exchange nodes that are mapped to it by any of these levels. Thus at most 16 long shuffle edges
our mapping. can have endpoints in this row. (Careful counting can

Now we show that the mapping is at most two to one. reduce this number to 6.)
That is, given a butterfly node (p, r) we can describe Thus at most 16 long edges are adjacent to any row
at most two shuffle-exchange nodes that could possibly of the butterfly. This satisfies condition 2, above.
be mapped to (p, r) as follows. Recall that a butterfly Thus, the shuffle-exchange graph can be embedded in
node (p, r) has all the bits of w in r's binary represen- the butterfly with constant congestion.
tation except for a.. And these, we recover by finding
the length of the string after the longest group of zeros 5.4 Application to optimal area and volume
in r's binary representation not straddling the pth bit. layouts for the shuffle-exchange graph
We know that we have to reinsert them either directly
before or directly after that group of zeros. This gives The N-node butterfly can be laid out in O(N 2 / log 2 N)
us all the bits of the domain nodes except for a cyclic area (trivially) and in O(N 3 / 2/ log3 / 2 N) volume [201.
shift uncertainty. Thus, the domain of (p, r) can only Since the N-node shuffle-exchange graph can be embed-
be nodes from two necklaces. Furthermore, the least ded in the N-node butterfly with constant congestion,
significant bit of the nodes' labels is uniquely specified we can simply blowup these layouts by a constant fac-
by the place where the pth bit of r's binary represen- tor to obtain layouts for the shuffle-exchange graph with
tation occurs in the necklaces' labels. Thus only two equivalent area and volume.
shuffle-exchange nodes can be mapped to any node in
the butterfly. 5.5 A work preserving emulation of a shuffle-

Finally, we argue that we map at most a constant exchange graph
number of shuffle exchange nodes with distant neighbors
to any butterfly row. We construct an O(logN)- step work-preserving sim-

Notice that we always ignore the value of the least ulation of the shuffle-exchange graph on the butter-
significant bit in the mapping of shuffle-exchange nodes fly by first embedding the shuffle-exchange graph in

an N log N-node butterfly with constant congestion, shifting by the same amount. The position in the row
and then embedding the N log N-node butterfly in an is clearly the number of shifts we used to get to wi and
N-node butterfly in the natural way. It is not diffi- the row number.
cult to show that the N-node butterfly can then simu- To finish, we observe that each edge in any of the
late the N Ig N-node shuffle-exchange in O(log N) steps. butterflies is mapped to a path of length at most three
Whether or not there is a real-time emulation remains in the shuffle-exchange graph since we either shift twice
an interesting open question. to reach (p + 1, r) 's image, or we exchange the current

bit and shift twice to reach (p + 1, rj..p-...rn)'s image.

6 Emulations in a shuffle-exchange Thus we can embed V/'/ log v"V vYlog v' -node

graph butterflies in an N-node shuffle-exchange with max load
2, and dilation 3.

6.1 Work preserving emulations of arbitrary This technique can be extended to prove that for any
binary trees constant 0 < c < 1, Ne distinct N 1 E butterfly graphs

can be embedded in an N-node shuffle-exchange.
It is well known that the shuffle-exchange graph can

emulate a complete binary tree in real time. Thus
by the results of Section 4, we know that there is 6 A catio t on ae
an O(log log N)-time work-preserving emulation of the exchange graph
class of binary trees on the shuffle-exchange graph. It is known that an N-node butterfly can sort N packets
Whether or not this emulation can be made real-time with high probability in O(log N) steps [11, 15, 17]. The
remains an open question. result does not directly extend to the shuffle-exchange

graph because the shuffle-exchange graph does not have
6.2 A constant-dilation embedding of N' dis- the nice recursive structure possessed by the butterfly.

tinct N -node butterflies However, by combining the embedding result of Sec-
tion 6.2, the butterfly sorting algorithm in [11), and the

A shuffle-exchange graph of size N can hold N1 distinct columnsort algorithm of [9], we can obtain an algorithm
N 1 - -node butterfly graphs for 0 < c < 1 with max load for sorting N packets on an N-node shuffle-exchange in
and congestion of 0(1/c). O(log N) steps with high probability.

_ We illustrate this by proving it for e = 1/2 -

log(1/21og N). That is, we embed M1log M distinct 6.4 Real time emulations of arrays
M logM-node butterfly graphs in an N = M 2-node
shuffle-exchange graph with constant congestion and By combining a single level of the kind of analysis in
constant dilation. We assume that M = 2 ' . Thus Section 5.2 with the result of Section 6.2, we can emulate
each row of the butterfly can be represented by a k- an array in real time on a shuffle-exchange graph. This
bit string, and each node of the shuffle-exchange can is despite the fact that any 0(l) to 1 embedding of an
be represented by a 2k-bit string. A similar result was N-node array (with dimension 2 or more) in a shuffle
proved by Raghunathan and Saran [16]. exchange graph has dilation Q(log log N) (2].

To map MI log M butterflies to the shuffle-exchange
graph, we use the following easily proven lemma. 6.5 A work preserving emulation of the butter-

fly
Lemma 16 The set of k = logM-bit strings has at
least M/21ogM nonintersecting subsets of log M dis- By using standard techniques in routing normal hy-
tinct strings which are cyclic shifts of each other. percube algorithms, it is easily shown that there is an

O(log N)-step work-preserving simulation of a butterfly
For each of these groups we pick the lexicographically on a shuffle-exchange graph. Whether or not there is a

minimum string to represent the group. We associate real-time simulation remains an important open ques-
the MI log M butterflies two to one with the M/2 log M tion.
groups' representative strings. Say butterfly i is associ-
ated with string w'. We map a node (p, r) in butterfly 7 Remarks and open questions
i to a shuffle-exchange node by shuffling the bits of wi
with the bits of r's representation, and choosing the There are many questions left open by this paper. We

current bit to be under the image of rp. That is, node list a few of them in what follows.
(p, r) in butterfly i is mapped to shuffle-exchange node 1. Is there a real-time simulation of a complete ternary
r1wx...rwp...rn wp. tree on a complete binary tree?

S From a shuffle-exchange node we can recover the rep-
resentative string wi by picking out every other bit and 2. Is there a (universal) class of bounded-degree
shifting to the lexicographically minimum string. We graphs that can simulate the class of all bounded-
finding the row string by picking out the other bits and degree graphs? (If so, they must be expanders.)

3. Is there a real-time simulation of a butterfly on a (10] F. T. Leighton, M. Lepley, and G. L. Miller, "Lay-
shuffle-exchange graph or vice-versa? outs for the shuffle-exchange graph based on the

complex plane diagram," SIAM Journal of Alge-
4. Can the notion of work-preserving be meaningfully braic and Discrete Methods, Vol. 5, pp. 177-181. w

modified to incorporate measures such as VLSI lay-
out area? [11] T. Leighton, B. Maggs, and S. Rao, "Universal

packet routing algorithms," Proceedings of the 29th
5. Are meaningful results possible if we consider simu- Annual Symposium on Foundations of Computer

lations that are not work-preserving, but which are Science, IEEE, October 1988, pp. 256-271.
close to work-preserving (e.g., we allow inefficiency
of E(log N))? [12] F. T. Leighton and G. L. Miller, "Optimal lay-

outs for small shuffle-exchange graphs," VLSI 81-

Acknowledgements Very Large Scale Integration, ed. J. Gray, Academic
Press, London, 1981, pp. 289-299.

We are deeply indebted to Marc Snir for his helpful
comments and for motivating this research. Thanks also [13] F. Meyer auf der Heide, "Efficient simulations

to Tom Cormen for producing Figure 1. among several models of parallel computers,"
SIAM Journal on Comput:ng, Vol. 15, No. 1,

References February 1986, pp. 106-119.

[1] V. E. Benes, "Optimal rearrangeable multistage (141 C. H. Papadimitriou and M. Yannakakis, "Towards
connecting networks," Bell System Technical Jour- an architecture-independent analysis of parallel al-
cal, Vol. 43, July 1964, pp. 1641-1656. gorithms," Proceedings of the 20th Annual ACM

Symposium on Theory of Computing, May 1988,

[21 S. N. Bhatt, F. R. K. Chung, J.-W. Hong, F. T. pp. 510-513.
Leighton, and A. L. Rosenberg, "Optimal simu- [15] N. Pippenger, "Parallel communication with lim-
lations by butterfly networks," Proceedings of the ie er, Prallel o ntio ith Aim-20th Annual ACM Symposium on Theory of Coin- ited buffers," Proceedings of the 25th Annual
p0hin May 1988, pp. 192-204. Symposium on Foundations of Computer Science,puting, My1IEEE, October 1984, pp. 127-136.

[3] S. N. Bhatt, F. R. K. Chung, F. T. Leighton, and A. Raghunathan and H. Saran, "Is the shuffle-
A. L. Rosenberg, "Optimal simulations of tree ma- 16 exchange better than the butterfly?," unpublished
chines." Proceedings of the 27th Annual Symposium manuscript.
on Foundations of Computer Science, IEEE, Octo-
ber 1986, pp. 274-282. [17] J. H. Reif and L. G. Valiant,"A logarithmic time

[4] S. N. Bhatt and I. Ipsen, Embedding Trees in the sort for linear size networks," Journal of the Asso-

Hypercube, Yale Univ. Report RR-443. ciation for Computing Machinery, Vol. 34, No. 1,
January 1987, pp. 60-76.

[5] D. S. Greenberg, L. S. Heath, and A. L. Rosen- [18] M. Sekanina, "On an ordering of the set of vertices
terg, "ypticubeunpblise manusc rip inof a connected graph," Pub. Faculty of Sci. Univ.

Brno, Czechoslovakia, No. 412, 1960, pp. 137-142.
[6] D. Hoey and C. E. Leiserson, "A layout for the [19] D. Steinberg and M. Rodeh, "A layout for the

shuffle-exchange network," Proceedings of the 1980 [g"
International Conference on Parallel Processing, shuffle-exchange network with E(N 2 /log 3 /2 N)

IEEE, August 1980, pp. 329-336. area", IEEE Transactions on Computers, Vol. C-
30, No. 12, December 1981, pp. 977-982.

[7] D. J. Kleitman, F. T. Leighton, M. Lepley, and
G.L. Miller, "New layouts for the shuffle exchange [201 D. S. Wise, "Compact layouts of banyan/FFT net-

graph," Proceedings of the 13th Annual ACM Sym- works," VLSI Systems and Computations, H. T.

posium on Theory of Computing, May 1981, pp. Kung, B. Sproull and G. Steele, eds., 1981, pp.

278-292. 186-195.

[81 C. P. Kruskal, L. Rudolph, and M. Snir, "A com-
plexity theory of efficient parallel algorithms," un-
published manuscript

(9] F. T. Leighton, "Tight bounds on the complexity
of parallel sorting," IEEE Transactions on Com-
puters, Vol. C-34, No. 4, April 1985, pp. 344-354.

